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INTRODUCTION

It has long been recognized that bulk crystalline polymers
consist of heterogeneous regions. Essentially, there are
two of these: crystallite and amorphous or non-crystalline.
Crystallite size, estimated by X-ray diffraction or by
electron microscopy, ranges in general from 102 to 103 A.
Thus, the mechanical properties exhibited by bulk
crystalline polymers always result from the simultaneous
and often unresolvable contributions from these
heterogeneous regions.

Several theoretical treatments’ ~° have been published
attempting to predict mechanical performance on the
basis of a limited number of factors such as the elastic
constants of both crystallite and the non-crystalline
region, methods of coupling the two regions, crystallinity,
chain orientation, etc. Achievement of much enhanced
mechanical properties by the ultra-high orientation
processing® “® has shown these treatments to be of
increasing practical importance in estimating limiting
mechanical properties. Thus elastic constants are of basic
importance.

The crystal is defined as the most compact, regular
aggregate of molecules which gives the upper limiting
elastic constants possible. Sakurada and coworkers® ~!!
studied the Young’s moduli of the crystal of polymer (after
work by Dulmage and Contois'?), applying X-ray
diffraction to a highly-oriented bulk specimen. From a
study of the increase in lattice spacing, the mean value of
the strain in the plane normal to the direction of the
crystallites held under uniaxial tension was obtained.
However, it was experimentally much more difficult to
measure the stress exerted in the crystallites. They
therefore assumed that the stress was homogeneous
within the specimen (corresponding to the Reuss model'?)
and put the bulk stress equal to the stress in the
crystallites. Geil et al.!® recently tackled the stress—strain
curve for a piece of a single crystal of orthorhombic
polyethylene, employing a microtechnique, but apart
from this the Sakurada approach is still the only way to
obtain stress—strain relationships for polymer crystals.

However, there is another type of stress which is
relevant, i.e. hydrostatic pressure. Hydrostatic pressure is
a more advantageous property than uniaxial stress for
the following reasons.
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First, no calibration due to deformation of the bulk
specimen is needed to obtain the true stress. For an
anisotropic homogeneous body of material which is
submerged in liquid under pressure P, an arbitrary plane
experiences only pure hydrostatic pressure, normal to
that plane and equal to the pressure P; there are no
components of shearing stress.

Second, there is no restriction, in principle, upon the
upper limit the hydrostatic stress can take. For uniaxial
stress, the upper limit is determined by the strength of the
bulk specimen and is often too low to give a lattice strain
observable with sound accuracy. Third, it was found that
strains induced by the hydrostatic pressure in the polymer
crystallites are completely recoverable!® upon removal of
the load: creep, which is inherent in bulk polymeric
materials subjected to uniaxial stress, does not take place
to any appreciable extent'®. All of the above factors
favour clearer experimental results.

Finally, hydrostatic compression yields an equation of
state for the polymer, only recently discovered.

To apply a hydrostatic pressure, however, homo-
geneous stress must be assumed if we are to find the
pressure acting on the crystallites. If this holds for uniaxial
stress, the microstructure model consisting of crystalline
and non-crystalline regions connected in series must hold
for the oriented bulk specimen, both in the longitudinal
(parallel)!? and the transverse (perpendicular)'®
directions to the fibre axis of the drawn specimen. For
hydrostatic compression, the homogeneous stress
assumption is affected to a much smaller degree by bulk
specimen microstructure since this holds as long as the
non-crystalline region transmits the pressure as a liquid
medium. This is most likely when time is allowed for
pressure equilibration. Experimental evidence for this will
be given below.

Theoretically , a considerable body of theory has
been developed, particularly for polyethylene. To a first
approximation, the contraction of the molecular crystal
by hydrostatic compression corresponds to the decrease
in the distance between the non-bonded atoms of the
adjacent chains. The free energy increase due to such a
contraction of the molecular crystal will be estimated?7+2°
if the coordinates of the non-bonded atoms concerned are
known together with their potential energy function and
the volume dependence of the frequencies of the
associated vibrations. Without the last parameter, the 0K
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compressibility and the pressure-volume (P-V)
relationships can be calculated. Miiller!'”, pioneering the
X-ray diffraction technique under high hydrostatic
pressures, used a beryllium (Be) metal cell to calculate the
0K compressibilities of paraffin crystals and compared
them with his own experimental results. Since then,
calculation of the compressibility and the equation of
state of the paraffinic crystals has been refined by several
authors.

Several articles have been published on the effects of the
hydrostatic pressure on the compressibility of bulk
material of polymers*°. This review concerns the crystal
lattice of polymers, not the bulk material. The specimen
used in the experiments described is, however, a bulk
crystalline polymer, 0.1-1 mm (excepting the case
reported by Miyaji*' who used a mat sample of
polyoxymethylene single crystal). The term ‘polymer
crystal’ is used for convenience, instead of ‘polymer
crystallite’ or ‘polymer crystalline region’ which are
strictly correct. An a priori assumption will further be
made that there is no difference in compressible properties
between the crystallite and a single crystal of infinite size.

THEORY

The Helmholtz free energy A of a crystal is given
by the sum of the lattice energy U and the normal modes
or phonon vibration energy A, as expressed?’ by
equation (1):

21.27.32

A:U+Avib (1)

U may be calculated from the coordinates of the non-
bonded atoms in the crystal and the interatomic potential
functions associated with them, as

U :%Z Vitri), 2)

where the potential is denoted by V;; as function of the
distance r;; between the ith and jth atoms. Because the
interatomic potential function is generally treated as
independent of temperature, U is determined solely by the
distances between non-bonded atoms. It may be
described as a function of volume as long as the unit cell
dimensions and the coordinates of the atoms within it are
known.

A, 1s given by equation (3) for a crystal which is treated
as a set of harmonic oscillators:

A=) 3hv;+ Y kT In[1 —exp(—hv,/kT)] (3)

where v, is the normal frequency of the jth mode, k the
Boltzmann constant, h Planck’s constant and T the
absolute temperature. The first term on the right-hand
side of equation (3),

2hy, (@)

is the zero point energy (ZE). The second term may be
calculated according to?”:

ZkT In[1 —exp(—hv/kT)]
=N "%k TZln [2sinh(hv (k)/2k T)],
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where v(k) denotes the normal frequency of the ith branch
at the point k in the reciprocal space and N the number of
points taken in the computation. Since the potential
energy function V,; is anharmonic, the normal mode
frequency calculated using the force constant derived
from V,; varies with volume. For this reason, the
calculation based on equation (3) on the one hand and the
anharmonic V; on the other is equivalent to an
approximation using a ‘quasiharmonic’ oscillator.

Differentiating the Helmholtz free energy with respect
to volume, we find the pressure P of the crystal,

P=—(0A/0V); (6)

Substituting equation (3) into equation (1) and
differentiating, P is:

o dU 1 1 hv
=T Ly D k=1 ()

In equation (7), y;=—(V/vldv,/dV) is called the
Gruneisen parameter for the jth oscillator and reflects the
anharmonicity of the force field. It is positive because v,
increases®® with decreasing volume.

Pressure P is divided into three parts as follows:

PZPLPZE+P‘] (8)
where:
dU
Pl =—-——
==y ©
I s
Pze zvzj’/}-h"j (10)
J
and
1 hv,
=Ny T
Pr= sz:}jexp(hvj/kT)—l (1

Inequation (8), P is the pressure contributed by a ‘spring’
of lattice and can take positive or negative values
according to whether the volume of the crystal is smaller
or larger than that at absolute zero. Pz and Py are the
zero point vibration and the thermal vibration of the
harmonic  oscillator.  Kobayashi?” applied the
perturbation theory of Kitagawa and Miyazawa’“ to the
calculation of Pz¢ and Py. Here it is worth while noting
that thermal vibration energies of the harmonic oscillator,
by themselves, never contribute to the pressure. It is only
because y s are different from zero that they contribute to
the pressure.

Equation (7) now provides the theoretical basis for
obtaining the equation of state of a crystal composed of
‘quasiharmonic’ oscillators.

MATERIALS AND SAMPLE PREPARATION

Polymers studied by various authors are
high density polyethylene (HDPE)!®-37-38.44-51.
low density polyethylene (LDPE)*!:454¢;
polytetrafluoroethylene form II (PTFE(Il)) at
10°3%-%2 and form IV (PTFE(IV)) at 24°C39-52;
isotactic polypropylene (it-PP)*-39:33;
isotactic poly(1-butene) (it-P1B)*1-5¢;
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Table 1 Drawing and annea’ing conditions for the X-ray sample*

Drawing Annealing
Material Moulding Density
temp. Temp. Draw Temp. Time Ten- at 30°C
Polymer Grade Manufacturer °c) (°c) ratio (°c) {min) sion {g cm—3) Notes
it-PP HFO-J400 Mitsui Petrochemi-
cal Industries 200 120 6.0 120 60 C 0.905
it-P1B E xperimental Exxon 150 100 9.0 110 60 (o4 0910
it-P4M1P TPX-RT20 ICl Japan 278 170 6.5 200 30 C 0.831
PTFE Polyfion M-12  Daikin Kogyo — 235 3.2 235 60 C 2.088
PVDF(I) KF {sheet) Kureha Chemical - room 45 268 60(W) C 1.775 Annealed at
Industries temp. 40 kbar (T}

PVDFI) KF (chip} Ibid 200 75 4.2 120 30{w) C 1.775
PVDF(N) KF {chip) Ibid 210 160 5.0 150 600 F 1.788
POM Delrin 100x DuPont 190 160 6.0(rd) 160 5 C 1422
PEQ PEO-18 Seitetsu Kagaku 100 60 50 60 60 C 1.215
PTMO E xperimental  Our laboratory 55 40 5.0(rd) 30 90 C —
PET Unitika-Ester Unitika 270 73 40 210 20 L 1.342
PEOBI(a) Experimental  Unitika 250 76 3.3 200 60 F 1.337
Ny-6{a) 10308 Ube Industries 250 150 4.0 135 1440(w) C 1.145
Ny-6{y) 10308 Ibid - 150 3.0 195 20 L 1.142
at-PVA PVA-E Kuraray cast(w) 150 4.0 225 5 Cc 1.305
at-PVA E xperimental

(bristle) - — 80 6.0(dr} 225 5 C 1.302

* For polyethylenes, see Table 3. W, in Wood’s metal; w, in water; C, at constant length in an air heating-bath (unless noted); F, under free
length in a small cytinder dipped in a silicone oil heating-bath; L, under free length, lapped with aluminium foil and dipped in siticone oil
heating-bath; rd, initially roli-drawn and then uniaxially drawn; dr, uniaxially drawn and then rolled; (T), this sample which gave sharp
equatorial reftections was supplied by Professor Takemura of Kyushu University

46,50,54.
H

isotactic poly(4-methyl-1-pentene) (it-P4M1P)
polyoxymethylene (POM)3!:#1:46:49.30,
poly(ethylene oxide) form I (PEO(I))*!-°3;
poly(tetramethylene oxide) form I (PTMO(I))*!-3;

poly(ethylene p-oxybenzoate) a-form
(PEOB(OC)41’50’56;
nylon-6 a-form and y-form (Ny-6(x) and Ny-

(6(?))50'57‘58'
atactic poly(vinyl alcohol) (at-PVA)
poly(vinylidene fluoride) form I and form II (PVDF(I)
and PVDF(II))*!-¢°;

58,59,
h

carbon fibre derived from polyacrylonitrile
ﬁbre41,50,51,61.
Here, the orthorhombic crystal of HDPE is

abbreviated as o-PE.

Ito and coworkers used compressibility samples
prepared as follows. Solid chips, with the exception of at-
PVA and carbon fibre, were melt-pressed between the two
metal plates of a hot hydraulic press. A plate of thickness
2-3 mm was obtained which, when hot-drawn to a draw
ratio of several times, gave a sheet with a thickness
suitable for preparing rod samples for X-ray diffraction.
Each drawn sheet was given ample annealing treatment in
an air bath or by lapping the sample with aluminium foil,
in a silicone oil bath. This is essential to obtain stable
crystal structures and sharp X-ray reflections. Detailed
procedures for preparing Ny-6(x), Ny-6(y) and at-PVA are
described in ref 58. The annealing conditions, draw ratio
and the density of the drawn and annealed samples at
30°C are summarized in Table 1.

A highly graphitized carbon fibre was supplied by
Toray Industires, Inc. It was made from polyacrylonitrile
fibre and had a density of 2.083 g cm 3 at 30°C. Natural
graphite (supplied by Nippon Cargon Co., grade SAD,
ash content less than 0.01%)) was used as the reference
material for the carbon fibre and had a density of 2.126 g
cm~ 3 at 30°C. The 002 spacings of these samples were,
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respectively, 3.384 and 3.362 A, compared with the
reported value®? of 3.354 A.

An unoriented, well-crystallized HDPE sample was
prepared from Sholex 6050 (Showa Denko Co.), and was
moulded at 165°C in a hot press, followed by cooling in
the press to 120°C, annealing at this temperature for 3 h
and cooling to room temperature by shutting off the
press-heaters. This unoriented specimen had a density of
0.968 g cm~* at 30°C.

Low molecular weight organic crystalline substances

were used as reference materials. These were
n-heptacosane**#%:# 3! adamantane*! #%:°,
hexamethylenetetramine*'°, pentaerythritol*!-3°,

which were purified by recrystallization and had melting
points of, respectively, 59.6°-61.2°, 269.0°-270.5°, >259°
(sub.) and 249.2°-251.5°C. The low molecular weight
crystals were ground in an agate mortar to give a fine
continuous powder diagram. The powder sample was
packed directly in the hole of a Be-cell'>. Mixing a silicone
grease with the powder sample, to soften the specimen and
transmit the hydrostatic pressure in a more even manner,
gave the same resultsas t/ose for pure powder crystals.

A powder sample of natural daamgnd was supplied by
Sanwa Diaeond Industries, Inc. Average particle size was
0.5 um diameter.

RESULTS AND DISCUSSION#1-49-51

POLYETHYLENE

Results

The diffraction lines obtained from the equatorial
planes and the basal (002) plane of o-PE at 20°C at
increasing pressures up to 8 kbar are shown in Figures la
and 1b, respectively.



T * 1oL dddd k
+ o) 0
3 ie °¢ g %2% @
[aFal
b
r
[eN] +
[a¥a]

Figure 1 X-ray diffraction patterns for (a) the equatorial and

(b) the basal 002 reflections of drawn and annealed HDPE. Pres-
sures (kg cm—2) (from the bottom): {a) 1 (normal pressure), 500,
1000, 1500, 2000, 2500, 3000, 4000, 5000, 6000, 7000, 8000,

1 (normal pressure) and 167 (residual pressure); (b) 1, 1000, 2000,
3000, 4000, 5000, 1 and 76. Pressure medium: water

The indices of the lines in Figure la are (starting at low
angles) 110, 200, 210, 020, 120, 310 and 220, respectively.
Exposure time was 20 min for the intense 110 and 200
reflections and 90 min for the others. This was achieved by
blocking out the former reflections with a brass shield.

The equatorial diffractions in Figure Ia shift towards
higher angles with increasing pressure, i.e. the interplanar
spacings decrease with increasing pressure. Meanwhile
the 002 reflections in Figure Ib remain at almost the same
angle. In both cases, visual inspection indicates that the
widths and the intensities of the diffraction maxima are
approximately constant under the range of high pressures.

Some residual pressure remains because of the friction
of the Bridgman seal when the pressure is released (after
each experiment the high pressure gauge was checked to
ensure that the zero point had been recovered). The
residual pressure causes a residual shift of the diffraction
lines from the positions registered before the pressure was
applied (see the exposed zones at the bottom and second
from the top in Figure Ia).

Such slight residual shifts do not result from non-elastic
strain of the crystal lattice. This phenomenon, found in o-
PE crystal (the hydrostatic pressure (8 kbar) has little
effect on leaving any unrecovered, non-elastic strain) is
commonly found in the other polymer crystals. Also, the
responses of the strains were found to be elastic within the
time scale of the X-ray exposures, as in Figure 2 where the
pressure was raised to 3000 kg cm ™ over a period of 60 s
and kept constant for about 6 h. In Figure 2, the strain in
the (110) plane, &, 1s defined by equation (12), which
gives the linear strain of the crystal normal to the observed
lattice plane:

Ad
b =75 (12)

0,(hkl)
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where d; ., 15 the spacing of (hkl) plane at normal
pressure and Ad is the increment induced by applying a
high pressure. The strain behaviour of the (110) plane is
elastic under pressurizing-releasing pressure cycles,
giving a constant ¢, under constant pressure& The
same concdusion was obtained wit/ the 200! plane.

Figure 3 shows strain g, vs. pressure relationships for
o-PE (200), (020), (110), (011) and (002) planes. The curves
seen in Figure 3 show the strain per unit stress decreasing
with increasing stress; this originates from the
anharmonicity of the potentials which work in the force
field among the constituent non-bonded atoms. The
equatorial (hk0) planes give rise to transverse strains
perpendicular to the fibre-axis, while the basal (002) plane
generates a longitudinal strain parallel to the fibre-axis
and along the chain. In Figure 3, —¢,,, values amount to
4.0-4.59, at 7.85 kbar, with the strain in the a-axis
direction ¢, 0, always being greater than that in the b-axis
direction &y, ,. In the fibre-axis direction, the o-PE crystal
is essentially incompressible (—¢,,,=0.0667;, at 5 kbar)
and can even be compared with the incompressible
behaviour of the (111) plane of diamond*°.

The spacing of each lattice plane at normal pressures
was confirmed to fit to an orthorhombic unit cell®?.
Further, it was found that under applied pressures, the
spacing and the strain of each lattice plane satisfied

3
P = 3000 kg cm=2 (constant)
(O—5-0—0—0 —0r T Q. Q
oF
R
E
T
[ -
o | | !
(@] [e]e] 200 300

Time (min)

Figure 2 Strain in the (110) plane for drawn and annealed HDPE
plotted against time under a constant pressure of 3000 kg cm—2

5
PE (high density)
orthorhombic
41 20°C
3

i)
o
6]
' py Linear compressibility
nol{bar)™']
a...877xI07¢
b 672xI07
B c... OI3 xI0™ 8
(O02)
O 4 : e O] 1 1
¢} 2000 4000 6000 8000
P (bar)

Figure 3 Pressure—strain curves for 0-PE crystal at 20°C. Full
line indicates the third order polynomial fitted by least squares
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5F PE
orthorhombic
20°eC (310)
al-
(HO)
~ 3F
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— Calculated
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o ] ] | |
O 2000 4000 6000 8000
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Figure 4 Comparison between calculated (full line} and observed
strains for the 110,310 and 011 o-PE reflections, showing the
conservation of the orthorhombic structure under the high pressures

(within the experimental error) the following
orthorhombic relationships:
Vdg =1 ja® +12/b> + P fc? (13)

and
B(hkl)/d(z),(hkl) = hzsa/a(z) + kzsb/bé + IZEC/C(Z) (14)

where d . a, b and ¢ are the spacing of (hkl) plane and the
three lattice constants of the orthorhombic cell under
applied pressure; a,, by and ¢, are the lattice constants at
normal pressures; and ¢, ¢, and ¢, are the linear strains
along the a-, b- and c-axes. This is shown in Figure 4 where
the strains in the (110), (310) and (011) planes, calculated
using equation (14) from the observed &40, €420, and
€002y are seen to be in good agreement with observed
values. The conclusion is therefore that the o-PE crystal
deforms under pressure at room temperature while
retaining its orthorhombic structure. No phase transition
occurs up to 8 kbar. This evidence has been extended by
Hikosaka, Minomura and Seto*® to a pressure of 45 kbar.
Thus the volumetric strain can easily be obtained by
calculation from the observed linear strains along the
principal axes. These and the calculated volumetric
strains can be represented by third order polynomials as
functions of pressure. By least squares fitting, these are as
follows, where pressure is measured in bars:

~ €200y =877 x 107 P —0.54 x 10 °P?
+0.018x10712P3  (15)

_3(020)=6,72 x1076P -0.24 x 10" °P?
+0.005x10712P>  (16)

—002=0.13x107°P (17)

—AV/V,=156x10"5P—0.84 x 10~ °P?
+0030x 10712 (18)

In equation (18), AV is defined by AV =V, — I, where V;
and ¥, are the volumes of the crystal at pressure P and at
normal pressure, respectively. At 293K, ¥V, for o-PE is
0.9994 cm® g~ !.%¢ It should be emphasized that these
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equations are applicable only at pressures below 7850 bar
(8000 kg cm ~2),

It is clear from Figure 3 and from equations (15)-(17)
that the linear strains in directions perpendicular to the
fibre-axis in 0-PE are larger by two orders of magnitude
than those parallel to the fibre-axis. Such anisotropy of
the linear strains between the fibre-axial and the lateral
directions is inherent to the polymer crystal, whose
structure consists of covalently bound chains held loosely
in bundles by the weak secondary forces. In o-PE crystal,
the chain is in the fully-extended planar zigzag
conformation and has a large Young’s modulus®'?,
comparable with that of diamond; the lateral cohesion
forces, however, are typical of non-polar van der Waals
forces in paraffinic crystals. The linear strains as well as
the initial linear compressibility «,, defined as:

1 6d(hkl)) <65(hkl)>
K = ={ ) 19
O-(hkD dO,(hkl)( 0P Jrpoo P Jrpo 1)

are found to be smaller in the b-axis direction than along
the g-axis. This anisotropy in linear compressibility is
consistent with the anisotropy in the Young’s moduli
demonstrated by Sakurada et al'’, who obtained
E300)=3.1x10*bar and E g, = 3.8 x 10* bar, where Eis
the Young’s modulus. Here, the inversion in magnitude of
the relation between stiffness and compliance was taken
into account. Essentially the same results as described
above on o-PE crystal were obtained by several other
authors; these will appear later in the text.

We recall at this stage that our conclusions, equations
(15)(18), are based on the assumption that the non-
crystalline part of the specimen transmits the hydrostatic
pressure as a liquid medium. Experimental support for
this assumption is desirable. This is given in Figure 5

PE
SL l...{200)
2. (110}
—— drawn
0® unoriented o
4+ |
2
-
)
L
w
)
2 -
=
0 | | | |l
O 2000 4000 6000 8000
P(bar)

Figure 5 Comparison of the strains in the (200) and (110) planes
between the drawn (full line) and the unoriented (open and fuli
circles) specimens, giving support for the assumption of the homo-
geneous pressure transmittance
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5 PE 5 PE 5+ PE
(200} (020) ; (1o)
I IN(1972) | IN(1972) 1 IN(1972)
a4k 2 N(1978) | a4l 2 N(1978) 4L 2SNP(1977)
3 N(CEC)HI978) 3 SNP({1977) | ]
4 SNP(1977) 9 4 HMS(1977)
5 HMS (1977) 5 3 2
< 3F 2 5 3 4 5 3
o 3 [ [
P .w y ¥
2 2+ oL
| r» - L
a b c
O 1 | ] | 0 | L | | e | [ t 1
0 2000 4000 6000 8000 O 2000 4000 6000 8000 O 2000 4000 6000 8000
Aibar) ~(bar) ~{bar)

Figure 6 Comparison of the pressure—strain curves for the (200),
(020} and (110) o-PE planes among various authors. IN, Ito and
Nakamura41.45—46,50; N Nakafuku44: CEC, chain-extended
crystal; SNP, Sham, Newman and Pae37; HMS, Hikosaka, Minomura

where the observed results on the (200) and (110) planes of
the unoriented and annealed sample (open and full
circles) are compared with those for drawn and oriented
samples represented by solid lines calculated from
equation (15) for the (200) and equation (20) (below) for
the (110) planes.

— 10y =T69x 107 °P—0373 x 10~ °P2
+0.009 x 10712P*  (20)

(P <7850 bar)

Despite the large difference expected in the morphology
between the unoriented and the drawn and oriented
polymer materials, the same strains are observed in the
(200) and (110) planes, lending strong support for the
assumption of homogeneous stress. Moreover, the results
of Ito and coworkers are in complete agreement with
the results obtained recently by Nakafuku (4 kbar)**. This
is shown in Figure 6, where data obtained by the diamond
anvil technique (Sham, Newman and Pae (14 kbar)®” and
Hikosaka, Minomura and Seto (45 kbar)*®) are also cited.
Although the absolute values of the strain are themselves
small, the results obtained by Hikosaka et al. are a little
too low.

Most authors represent their results for the linear and
volumetric  strains by third-order polynomials
— &y = AP+ BP? + CP*. Numerical values of 4, Band C
reported by various authors for o-PE crystal are listed in
Table 2.

To study the effect of the defects induced by chain-
branching or foreign side groups on the pressure-strain
behaviour of the polyethylene crystal***6-3° another
HDPE sample (sample 2), an LDPE sample (sample 3)
and an ethylene—vinyl alcohol copolymer containing
3.9 mol%, OH groups (sample 4) were used. Recrystallized
n-heptacosane (n-C,,H,,, sample 5) was prepared as a
reference material. These and the HDPE sample used in
the preceding section (sample 1) were characterized as
shown in Table 3.

In Figures 7a and 7b, the strains for the (200) and (110)
planes as a function of pressure are compared among

and Seto38, Nakafuku's €(p20) data {CEC sampie) nearly coincide
with the €{g90) obtained by him for a drawn sample shown in
{b) with symbol N

these five polyethylene samples. Clearly, the two HDPE
samples exhibit similar strains, while samples 3, 4 and 5
show larger strains in the (200) and (110) planes.

Strains in the b-axis direction were calculated for
samples 3,4 and 5 from observed values of ¢, 4, and &, ; o,
using equation (14). These, with addition of some
experimental plots for samples 3 and 4, are compared in
Figure 7c¢ with the observed ¢,,, values for the two
HDPE samples. It is found from Figures 7a, 7b and 7c,
that defects clearly increase the compressibility of
polyethylene crystal. This is consistent with the
theoretical calculations of Tashiro, Kobayashi and
Tadokoro®® who demonstrated that the linear
compressibility of o-PE crystal increases with increasing
cell dimensions. x, values calculated for the b-axis
direction in the LDPE sample from Figures 7a, 7b and 7¢
are listed in Table 5.

The coefficients which appear in the polynomial
representing the linear crystal strains are, when
determined by least squares, fairly sensitive to the
experimental errors in the strains. Further, they are
inherently variable to some degree in the observed range
of applied pressure. Thus, the absolute values and not the
differentiated values of the strain are recommended as a
safer basis for discussion, particularly for purposes of a
strict comparison with theory. The excellent agreement
seen in Table 2 between the results by Ito et al. and
Nakafuku should be due to the fact that DHPE gives
sharp and clear reflections and minimal experimental
error in reading the reflection angle.

The bulk compressibility ff; as defined by equation (21)
may be deduced as a function of pressure by
differentiating the volumetric strain with respect to P:

1/eV

The results for fr obtained by various authors are
compared in Figure 8, in which the data by Hatakeyama,
Hashimoto and Kanetsuna*’ were obtained by
dilatometry using chain-extended 90%, crystalline sample
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Table 2 Polynomial expressions for the linear and volumetric strains of 0-PE crystal as function of pressure. Coefficients for —€(hk/) OF

—AV/Vy = AP + BP2 + CP3 are given. P in bars

Tempera- Sample Griuneisen
(hk!) or ture prepara- parameter €
—AVIV, (K) tion? Ax106 Bx10° Cx1012 kyx106 By x106 P{max)? (y} Author
200 11.7 -125 11.7
020 74 —0.20 74 .
002 293 DA 0.31 0033 031 2940 Ito and Marujl5
NIA 19.5 —1.49 195 34
200 877 054 0.018 877
020 672 —024 0.005 6.72 ito and
002 293 DA 013 0.13 7850 Nakamura®1.35:46,50
110 769 —037 0009 7.69
~AVIV, 15.6 -0.84 0030 156 30
200 DA 903 -0.71 0074 9.03
200 CEC 929 —078 0034 9.29
020 DA 697 -031 001 697
020 293 CEC 675 -0.10 -0.02 6.75 3900 Nakafuku44
002 DA 0.12 0.12
—AVIV, DA 1613 —-102 0.085 16.13 34
—AV/IV, CEC 1615 —0.88 0.008 16.15 29
200 398 DA 1652 -259 0.253 16.52
200 403 CEC 1852 —255 0.194 1852 sad
_AVIV, 398 DA 2563 -389 0.389 2663 | 3900 54 Nakafuku
—AVIV, 403 CEC 2538 -265 0.169 25.38 36
200 863 —0553 00156 863
110 739 —0401 00118 739 Sham, Newman
020°¢ 208 MA 684 -0.334 00101 6.84 13700 and Pae37
—AVIV, 1588 —1.043 00342 15.88 36
200 625 -0.137 00012 6.25 4 .
020 298 MA 555 —0.118 00012 555 45000 :n'g°sszt'f3'8M'“°m“'a
—AVIV, 1200 —0.29 0.0030 12.00 (15)

4 DA, drawn and annealed; CEC, chain-extended crystal, isothermally-crystallized at 5000 kg cm—2; MA, moulded and annealed (unoriented).

Polynomial is valid only below this pressure.
€ Given by!5y = —0.5 —8/A2

9 For (020) and (002), the same values of the coefficient as obtained at 203K are applicable?4.

€ Calculated from e(y 1) and €(200)

of o-PE. As shown, B; for o-PE rapidly decreases with
increasing pressure and, at ~8 kbar, has reduced to half
the initial value Br(P-»0). This initial 7, obtained at
room temperature, is abbreviated to f,,.

Comparison with theory

Results at room temperature. Miiller'” studied the
hydrostatic compression of a polymer crystal both
theoretically and experimentally. He calculated the linear
compressibilities of paraffin crystals in a direction
perpendicular to the chain-axis at absolute zero and
obtained two values of 3.8 x 107 ¢ and 10.8 x 10~ ¢ bar !
by using two different sets of potential functions.

Since Miiller, calculations of linear and bulk
compressibilities and isothermal P-V relationships have
been carried out by many authors. Their computation
methods can be divided into two groups: one is based on
Born-Huang lattice dynamics'®-®® which predicts the
initial compressibilities at P=0; the other system uses
equation (7), taking the coordinates of the non-bonded
atoms in the crystal as force centres which vary as
functions of temperature and pressure.

The former calculation method was refined recently by
Tashiro, Kobayashi and Tadokoro?3:2¢ who used the B
matrix in the normal coordinate treatments and
succeeded in much reducing the number of parameters for
computation by introducing space group symmetry of the
crystal. The latter type of calculation has been carried out
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by Miiller!’, Brandt'®, Pastine?!, Miyaji*! and also by
Kobayashi?”. Of these five authors, the first two
calculated the OK compressibility and isotherm, while the
last three took into account the contribution of the lattice
vibration to provide an equation of state.

For o-PE, if the crystal structure at T=0 and P=0is
known by extrapolation from data at very low
temperatures under atmospheric pressure, and if isotropic
compression in the transverse direction is assumed
together with incompressibility along the chain-axis and
conservation of the angle 8 between the plane of the zigzag
and the ac-plane, then the coordinates of the atoms in the
crystal at OK can be predicted as a function of volume.
This makes it possible to solve equations (2) and (9) which
give the OK isotherm. So far the zero-point energy has
been neglected.

From the OK isotherm obtained in this way, Pastine has
calculated?! the Griineisen parameter for the acoustical
low frequency vibrations which prevail over the optical
high frequency vibrations in contributing to the thermal
pressure. He used the equation:

1 iv@rpvy
=37 T (dpay) (22)

Equation (22) originates®? from the Debye theory which
describes the frequency of an elastic wave propagating in



Table 3 Characterization of polyethylene samples4S

Annealing

Density
at 30°C

CHj;
per

Double bonds per 1000 C

Material

Temp. Time

Draw

No. of

{gcm—3)

Notes

ratio °c) {min)

100 C

RR'=CH,

CHR’ RCH=CH,

Grade Manufacturer RCH

Polymer

sample

7.4 x 104, M, = 0.84 x 104
=12.0 x 104, M, =0.86 x 10*

=1.10 x 104
Contained 3.9 mo! % of —OH

My,
My
Mp

0.970
0.967
0911

180
180
180

09 x10
0.088 03 x8
0.69 55 x4

0.085

2.20
1
0.26

0.054

Showa Denko
Ibid.
Yukalon LK-30 Mitsubishi Yuka 0.120

Sholex 6050
Sholex 6009

HDPE
HDPE
LDPE

- N

90 180 0936

x5

Toyo Soda

Ethylene—vinyl Nipoflex

side group

540*

alcohol

copolymer
n-Heptacosane

solution. M.p. 59.6-61.2°C

Recrystallized from toluene

300

Chemicals

Tokyo

E.P.

* Commercial name of an ethylene—vinyl acetate copolymer manufactured by Toyo Soda Manufacturing Co. Sample 4 was obtained by complete saponification of this polymer
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an isotropic continuum as a function of volume,
volumetric compressibility and density. Applying the
Debye-like frequency distribution, where all the
vibrations are assumed to have the same y as that
determined by equation (22), Pastine evaluated the
thermal contribution to the pressure by the following
equation,

3 3
po2nfk Ty T z
P, =" () | de 23
: x 0) ) e —1 @)
0
sk {200)
20°C 8
B
4 $
bt
’5 a
o 3t :
i 0 ~— Sample |
o Sample 2
2k 5 a Sample 3
©
v Sample 4
3 e Sample 5
e -]
[
o | | ! L 8
O 2000 4000 6000 8000
Plbar)
5
(110)
4 200C 2
B
- 3
2 4
®
2+ — Sample |
a o Sample 2
A Sample 3
v Sample 4
- e Sample 5
| b
o) | | |
¢} 2000 4000 6000 8000
~lbar)
5
{020)
4= 20°C
ABC
3+
)
2
[*Y]
: oL — Sample |
o Sample 2
Aa Sample 3
L Bv Sample 4
C Sample 5
Cc
o | 1 [ |
O 2000 4000 6000 8000
A{bar)

Figure 7 Pressure—strain plots for {200), (110) and (020) pianes of
LDPE, ethylene—viny! alcohol copolymer and n-heptacosane com-
pared with HDPE. The numbers refer to the text and Table 3
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IN (1972)
N{1978)
N(CEC)(1978)
SNP(1977)
HMS (1977)
HHK (CECH1974)
IM(I971)

Bulk compressibility B(10™%bar™"}
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&
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Figure 8 Dependence of 8,45_25°c on pressure for 0-PE crystal

reported by various authors. IN, Ito and Nakamura41.45,46,50.
N, Nakafuku®4: CEC, chain-extended crystal; SNP, Sham, Newman

|
8000

L
6000

and Pae37; HMS, Hikosaka, Minomura and Seto38; HHK, Hatakeyama,

Hashimoto and Kanetsuna37; IM, Ito and Maruil3

PE Ctystal, 298K

20

Pressure (kbar)

-5 ~

|
090 095 |.OO 1.O5
Reduced volume x(=V/ig}

Figure 9 Calculated results2! for pressure (P}, lattice pressure
(PL) and thermat pressure (P) for o-PE crystal as a function of
reduced volume. Vj is the specific volumeat P=0and T =0

where p, is the density at P=0and T =0; n is the number
of atoms; 2n is the number of degrees of freedom for the
acoustical vibration, of which a further fraction of 2nf was
assumed to contribute to the thermal pressure (f=0.278
at 298K); x is the reduced volume given by x = ¥'/V,, where
V, is the specific volume at P=0and T =0. 0 is the Debye
temperature—123K was employed for 0-PE crystal. The
calculated P; (equation 9) which does not depend on
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temperature, P at 298K and P =P + Pr_sx are shown
in Figure 9 as a function of x. At x=1.0473—the value at
P=0 and T=298K for o-PE crystal—P; amounts to
—4.57 kbar which equilibrates with Pr= +4.57 kbar.
Because P; varies much more slowly than P, the
volumetric compressibility Br is primarily determined by
the variation in P, Pastine’s treatment was later applied
by Miyaji*! to polyoxymethylene crystal. He estimated
that at 298K P, amounts to 4.7 and 3.35 kbar at P=0and
20 kbar, respectively.

Recently, Kobayashi refined Pastine’s treatment
using a novel treatment. For each particular set of
lattice constants, he calculated the normal frequencies of
the k vectors in the first Brillouin zone of the reciprocal
space at intervals of 2.25° for J, and 4.5° for §, and 9,
(where 6, 6, and 0, represent, respectively, the phase
differences in vibrations in the neighbouring unit cell
along the ¢-, a- and b-axes). Thus for a given temperature
and given structural parameters, namely, ¢, b and the
setting angle 0 (¢ assumed constant) then the Helmholtz
free energy and the pressure associated with it can be
calculated from equations (1)+6). Kobayashi found the
contribution from the zero point energy, which had been
neglected by the other authors, was not negligible.

As an example of his calculations, the calculated
pressure at T=300K and 8=48.8°, expressed in a two-
dimensional manner with a and b as variables, is shown in
Figure 10. Full curves represent isobars in the 10° atm
interval, while the broken loops represent the Helmholtz
free energy per mole of CH, at P=0 with an interval of 10
J. The minimum in the Helmholtz free energy at P=0
gives ¢="7.508 and b=>5.184 A. Along each isobar, the
Gibbs free energy G=A+ PV has been calculated and
gives a minimum at the position indicated by a cross,
indicating that @ and b should decrease with increasing
pressure. As shown in Figure 10, the minimum G criterion

27,29

54

§-=488°
- 7=300K

blA

alA

Figure 10 \sobar lines for 0-PE crystal {6 = 48.8°) at 300K
{Kobayashi27). ——, Isobar lines at the pressures indicated (unit,
1.013 kbar =103 atm); — — — —, contour map of Helmholtz free
energy drawn at intervals of 10 J mol—! per CH,; +, the Gibbs free
energy minima. The straight line starting froma =7.508 A, b =
5.184 A indicates isotropic contraction with a/b = constant



predicts an anisotropic compression which deviates
slightly from the isotropic compression (represented by a
thick solid straight line) towards the side which favours
more compressibility in the b-axis direction. Assuming
incompressibility along the c-axis, the volume
corresponding to the G-minimum position can be
calculated to give the volumetric strain, —AV/V,, at
T=300K, without assuming the isotropic lateral
compression used by the other authors.

The results are shown in Figure 11, where the case
§=42° is also given. It is seen that the calculations by
Kobayashi are in good agreement with the values
observed by Ito and Nakamura*3#® and by Nakafuku**.
In Figure 11 are also given the calculations by Pastine?!
and the observed data by Hikosaka, Minomura and
Seto*® and by Sham, Newman and Pae’’. The observed
results were drawn using polynomials reported by these
authors to describe —AV/V, (Tuble 2).

| K(6=420)(1979)
2 K(6=488°)(1979)
3 P(1968) P
st 4 IN(1972) s
5 N(1978) o
6 HMS(1977) o
7 SNP (1977) e
e
| 3
77
s 7/
5 ///
£ 10 /s
o d
= 4 ///
~ //
< //
! ////
///
5////
///
5 i
/4
6
/4
'/
/4
/
4
| L | |
oO 5 10 15 20
P(kbar)
Figure 11 Calculated {(——) and observed {— — —} volumetric

strain vs. pressure. K, Kobayashi27; P, Pastine2!; IN, Ito and
Nakamura41,50; N, Nakafuku44: HMS, Hikosaka, Minomura and
Seto38; SNP, Sham, Newman and Pae37
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It should be pointed out that the polynomial formula
reported by Hikosaka et al. fails below 8 kbar to fit the i.r.
experimental data®®, namely, —AV/V,(%)=4.130, 4935,
7.626, 7.202 and 8.431 at pressures 2.65, 3.75, 6.80, 6.85
and 8.25 kbar, respectively. These, in turn, were found to
be in good agreement*! with the results obtained by Ito
and Nakamura and by Nakafuku. It may be argued, from
Figure 11, that Pastine’s calculation underestimates the
compressibility of o-PE by about 109, compared with the
observed values. In Kobayashi’s calculations, a little
closer agreement with the experimental results is seen to
be obtained at 0=42°.

The Griineisen parameters for o-PE crystal at P=0,
experimentally obtained and calculated according to
equation (22), are listed in Tuble 2. They were found to
take a value of ~3.0 at room temperature.

It should be noted at this stage that excellent agreement
has been found between the theoretical predictions of
Goel, Nanda and Jain®® and the experimental results
obtained by Ito and Nakamura.

The anisotropy of the linear compressibilities along the
a- and the b-axes, predicted in Figure 10 by Kobayashi
from the G-minimum criterion, are in the reverse order to
the experimental results described in the preceding
section. The reason for this discrepancy was attributed by
Kobayashi to possible gradual variation of the setting
angle 0 as the crystal was pressurized. The experimental
anisotropy which persists from the initial stages of
pressurization (Figure 3) can only be explained if the
insisted rotation of the setting angle increases?” and occurs
soon after the start of compression to an extent which
permits a switching of the anisotropy.

Alternatively, using Born’s dynamical theory of the
crystal lattice, the experimental anisotropy observed in
the transverse linear compressibilities of 0-PE crystal can
also be explained. According to this theory, the elastic
constants describing the elastic wave in an anisotropic
continuum can be expressed in terms of Born’s force
constants, which in turn are obtained by taking second
derivatives of the interatomic potential energy
functions'®. The calculated elastic compliances for 0-PE
crystal obtained by Odajima and Maeda'®, Wobser and
Blasenbrey??® and Tashiro, Kobayashi and Tadokoro?®
are listed in Tuble 4. For an orthorhombic structure, the
results listed in Tuble 4 can be extended?® according to
equation (24):

Kol)=(S,, +S,,+S,3)c08?0+(S,, +S,,+S,,)sin’6.
(24)

Table 4 Calculated anisotropic elastic compliances and initial linear and volumetric compressibilities (10—!2 cm?2 dyn—1)

Temp.
(K) Sn S12 S13 S22 S23 S33 Kag Kb K Bo Author
77 147 -33 —0.1 10.9 —0.23 0.40 11.3 7.4 0.07 18.8 Odajima and
293 214 -2.7 -0.156 120 —0.25 0.40 18.5 2.0 0.00 276 Maedal? *
77 125 —4.2 —0.07 10.7 —0.22 0.40 8.2 6.3 0.11 14.7 Odajima and
293 174 —4.0 —-0.10 11.8 —0.23 0.40 13.3 7.6 0.06 209 Maedal®t
0 106  —6.223 00046 1169 -0095  0.309 427 537 0209 9gs obserand
Blasenbrey
Tashiro,
293 1448 —4.78 —0.02 11.67 —0.06 0.32 9.68 6.83 0.24 16.756 Kobayashi and
Tadokoro26

* Calculated for Set 119 potential functions.
T Calculated for Set 11119 potential functions.
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Figure 12 Anisotropy of linear compressibility in the ab plane of

0-PE at 293K (Tashiro et a/.26). ——, Calculated by Tashiro,
Kobayashi and Tadokoro26; — — —, calculated by Odajima and
Maedal?; , observed by Ito and Nakamura4!1,50 {small bars

indicate experimental error)

P(298K)
12+ 400K 300K | 200K \
o)
-
8
X
a 6
4 —
2
a | 1 | 1 | L
086 088 090 092 094 0%6 098 100
Vp/Vo
Figure 13 Calculated and observed isotherms for o-PE at various
temperatures indicated (Kobayashi27), ——, Calculated by
Kobayashi?7 (a/b = constant), — - —, calculated by Pastine2!
(a/b = constant): — — —, observed by Ito and Nakamura41,50;

..... , observed by Nakafuku?4

The results were represented by Tashiro et al.?® on the o-
PE ab-plane by travelling a distance proportional to k, in
both directions along the plane normal drawn through
the centre of the structure (Figure 12).

The anisotropy deduced from Born’s lattice dynamics is
essentially in agreement with the experiment. In
particular, the results calculated by Tashiro et al. are in
excellent agreement with experiment.

Effect of temperature. The equation of state for the
polymer crystal was studied by Pastine?!, Kobayashi?’,
Midha and Nanda??® and Goel, Nanda and Jain?®. Since
the lattice pressure P in equation (8) does not depend on
temperature, the dependence of P-V relationship on
temperature is determined by the ZE pressure as well as
the thermal pressure.

Theoretical isotherms with 8=42° at 0, 100, 200, 300
and 400K were obtained by Kobayashi (Figure 13) where
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isotropic transverse compression was assumed. At 400K,
Kobayashi’s calculations gave fairly good agreement with
the results recently obtained by Nakafuku®*. In Figure 13,
the U-isotherm was calculated at OK ignoring ZE and it is
clear that the contribution of P,g compared with Py is not
negligible. Since Pastine’s OK isotherm comes close to
Kobayashi’s U-isotherm, the main reason for Pastine’s
underestimation may be ascribed to his ignoring the ZE
contribution.

Theoretical calculations of temperature dependence for
the linear strain are still not available!°2. Experimental
results obtained by Nakafuku*4, however, cover the
pressure range 1-3900 bar and the temperature range
293-403K. Of the principal axes linear strains ¢, €, €,
unique and interesting behaviour was revealed for ¢, The
three polynomial coefficients 4,, B, and C, are recorded
as a function of temperature in Figure 14, where two
samples of HDPE (a drawn material and a chain-
extended crystal) were used. 4,, which equals x,, is
almost constant until the temperature reaches 70°C, when
it exhibits an abrupt and steep increase to above 120°C;
a shoulder is observed at ~100°C. This shoulder was

Box 10%(cm? kg™

A, x10° (em? kg™")

2N

IU”

X
0

£

o)
v

@)

x
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o) X S X
| | 1 |
30 60 90 120
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Figure 14 Variation of A, B3 and C, with temperature, and
temperature dependence of §g for 0-PE (Nakafuku44). X, Drawn
HDPE; O, CEC of HDPE. All the polynomial coefficients with res-
pect to (020) and (002) planes {Ap, Bp, Cp;Ac) were constant and
independent of temperature?4



e (%)

-¢ (%)

-g (%)

PTFE (1I)
- pseudohexagonal
10°C
(100}
G,
-6 -l
KO(IOO)=9'OO x 10" bar
%Ro(o013)= 085 x 10 %bar™!
(00I13)
i 1 |
o 2000 4000 6000
P(bar)
PAMIP
™ tetragonal
200C
%op =166 x 107 ®bar™
Uol007) =3 5510 bar™
B .
B o (200)
e (220)
& (420)
(007)
' 1 L
2000 4000 6000
P{bar)
PP
[~ monoclinic
20°C
Ko(no)= 845 x107bar™
No(0a0)=12.2 x10"%bar™!
T o(M3) =04 x 10 %bar™! (040)
i (10)
— £(100) calc.
-5 ppel
" 6(100) c('1|<:=8'Og xIO™ bar
0 Q——0 (M3}
o 2000 4000 6000
P(bar)

Compressibility of the polymer crystal: T. Ito

PIB() d
41 trigonal
20°C
%o(300) =99 x10%bar™!
Ho(1g3) 03 x10 Cbar™ {300)
3 ¢
) %
o
A
| =
|
o o —0 (102} .
© 0
O 2000 4000 6000
A(bar)
POM e
3 hexagonal
20°C

_6 -
Ro(l00) ™ 586 xIO " bar :
Kg(105) = 2.46 x 106 bar—!

—€ {%)

O
O 2000

4000
P(bar)

6000

Figure 15 Pressure—strain curves for (a) PTFE(I1); (b) it-P4AM1P;
(c) it-PP; (d) it-P1B(1);and (e} POM

ascribed by Nakafuku to crystalline dispersion. Over this
temperature range k, , and x, . are essentially constant,
and the temperature dependence of the bulk
compressibility B, is primarily determined by x, ,, as
shown in Figure 14*%.

Nakafuku also demonstrated that the Griineisen
parameter remained constant up to ~90°C; above 90°C,
it increased with increasing temperature. A steeper
dependence on temperature was found for drawn HDPE
than for the CEC sample (Table 2).

The unique temperature dependence of ¢, and x, , of o-
PE presents a problem for future study.
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POLYMERS WITH HELICAL OR CONTRACTED
SKELETONS

Polytetrafluoroethylene

According to recent investigations by Nakafuku and
Takemura*?, the chain molecule in the PTFE crystal,
which under normal pressure has a helical 13,
conformation (phase II) or a slightly untwisted form of 15,
(phase 1V)®®®’ takes the fully-extended planar zigzag
structure under high pressure (phase I1I). It is clear that
upon transition to the high-pressure phase, the crystal of
PTFE elongates along the fibre-axis and contracts
laterally, the net effect being the observed decrease in
volume®®,

It is interesting to enquire whether the helical PTFE
chain elongates or contracts along the fibre-axis during
pressurization. Results obtained at 10°C in the phase II
state are given®? in Figure 15a, where the strains in the
(0013) plane are the longitudinal strains along the fibre-
axis, while those in the (100) plane are the transverse
strains. Clearly, the helical PTFE chain contracts with
increasing pressure, and, probably, this effect continues
until the transition to the high pressure phase arises, when
the chain abruptly untwists into the fully-extended planar
zigzag structure. The strain ¢, ¢, at 4903 bar, —0.0274, is
almost the same as ¢,,,, of 0-PE at the corresponding
pressure. In Figure 15a, the solid line is a second order
polynomial representation obtained by the least squares
method. The coefficients determined there will be
summarized and discussed in Table 5.

Isotactic poly(4-methyl-I-pentene)

For an ordinary organic molecular crystal containing
no extra heavy atoms, a strong correlation between
volumetric compressibility, §,, and crystal density can be
expected. f§, increases with decreasing density because of
the resulting increase in unoccupied space in the structure:
thus compressibility increases.

Of polymer crystals with low density, it-PAMI1P is a
unique example, exhibiting a crystalline density®® (0.812 g
cm™?) lower than that of the noncrystalline region’®
(0.838 g cm™3). The chain molecule in the it-P4MI1P
crystal assumes a  helical  conformation®®"!,
13.85/7,/86.8, where 13.85 denotes the fibre period (A), 7,
a helix with seven repeating units per two turns and 86.8
the cross-sectional area per chain (A?). The degree of
packing of the molecules may be expressed in terms of the
packing density’?, k, as defined by equation (25):

k=zvy/v (25)

where z is the number of chains per unit cell, v, the volume
of the chain by framing it with the van der Waals radii of
the constituent atoms and with sections of the six walls of
the unit cell, and v is the unit cell volume. The k value
estimated 2 for the tetragonal crystal of it-P4M1P is 0.57,
an unusually small value compared with k for o-PE”? of
0.70. Results given in Figures 15b and 16 were obtained by
the following formulae (P <4900 bar)**-59-54;

—6,=16.6x10"5P—1.01 x 10~°P? (26)
— 907y =355 x 107 P—0.25 x 10~ °P? 27)
—AV/V,=36.7x10"°P 2.7 x 10~ °P? (28)
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where ¢, in equation (26) refers to the mean value of ¢in the
transverse direction. In Figure 15b it is clear that the linear
compressive strains in the transverse direction are
isotropic and the tetragonal structure of it-P4MIP at
atmospheric pressure is preserved under high pressures.
The mean value of x, in the transverse direction, x,, ,, and
B, were found to be 16.6 x 107° and 36.7x 10™° bar ™!,
respectively. These linear and volumetric compressibilities
are as large as expected, more than twice as large as those
for o-PE. They will be discussed in Table 5.

The 007 reflections appearing in Figure 16 indicate the
longitudinal strain along the fibre-axis induced by
hydrostatic pressure, ¢(=¢,), which reached (in Figure
15b) —0.011 at 4900 bar. This value of ¢, may be
explained’* using equation (29):

g=—1 ;lz»v)P (29)

where v is the mean Poisson ratio, given by
v=(v,,+V,3)/2; P is the pressure and E, is the Young’s
modulus along the fibre-axis. E, for it-P4AM1P was found
by Sakurada and Kaji!! to be 6.6 x 10* bar. The Poisson
ratio for the tetragonal it-P4M1P crystal is not known
and v=0.43 was assumed.

Isotactic polypropylene, isotactic poly(I-butene) (I) and
polyoxymethylene

The chain structures for these three polymers which all
exhibit helical skeleton conformations in the crystalline
state are: 6.50/3,/34.4; 6.50/3,/45.2; and 17.39/9,/17.3 for
it-PP"%, it-P1B(I)’® and POM"’, respectively. The force
constants for the internal rotation are smaller by
approximately one order of magnitude than those for the
bond-angle deformation and by approximately two
orders of magnitude than those for the bond stretching
deformation’®. Since the mechanism of internal rotation
is assumed to occur in longitudinal deformation of an
isolated chain, the polymer crystal will have low Young’s
moduli, if free untwisting of the chain is permitted during
stretching. E; values for it-PP, it-P1B(I) and POM found
by Sakurada, Ito and Nakamae'® and Sakurada and
Kaji'! are 34x10% 245x10* and 53 x10* bar,
respectively, one fifth to one tenth of E, for o-PE,'*!!
(=235 x 10* bar). The previously mentioned value of E,
for it-P4M1P is 1/36 of E, for o-PE. Such low values of E,
found for the crystals of it-PP, it-P1B(I), POM and it-
P4MI1P have been theoretically explained’®.

Under hydrostatic pressure, the fibre-axial strain
should obey equation (29). However, no systematic
information about the Poisson’s ratio of the polymer
crystal, theoretical or experimental, is available. The
experimental results*®#%-3% for the strains obtained under
the hydrostatic pressure are shown in Figures 15¢—15e. In
these Figures, the strain obtained from the 009 reflection
of POM gives ¢, while, for it-PP and it-P1B, no reflection
could be found to represent g, directly. The angles between
the fibre-axis and the normal plane for (113) of it-PP and
(102) of it-P1B(I) are 10.8° and 12.0°, respectively, and the
strains in these two planes give approximate values of ¢,. g,
may be calculated from the observed spacings obtained
under different pressures for one hkl reflection on the Ith
layer line and two hkO reflections on the equator. Values of
¢, obtained in this manner are highly sensitive to
experimental errors in g, Or &, because g itsell is
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Figure 16 X-ray photographs of (a) the equatorial and (b) the
basal 007 reflections of drawn and annealed it-P4M1P. Under
pressures of (kg cm—2) (from): 1, 500, 1000, 1500, 2000,

2500, 3000, 4000, 5000, 1 and 138 (a) or 94 (b). Pressure medium,
water

small, often comparable in order of magnitude with the
experimental errors for &g, O )

As seen from Figures 15¢—15e, the fibre-axial or the
nearly fibre-axial strains found for it-PP, it-P1B(I) and
POM are unusually small, in contrast to the results of
uniaxial stretching'®'!. For POM, ¢, is virtually zero
even under the highest pressure applied. The same result
for 444, in POM was found by Miyaji*! for a single
crystal mat sample under pressures up to 22 kbar. It was
confirmed that ¢, 45, for POM approximately satisfies the
following hexagonal relationship:

Enos) _ 4100y | 256000)

3 = 2 2
dsosy 3 dp Co

(30)

The values of ¢ observed at 4903 bar are —0.0018,
—0.0016 and ~0 for it-PP, it-P1B(I) and POM,
respectively, which result in Poisson’s ratios of 0.45, 0.47
and 0.5 according to equation (29). These values of the
Poisson ratio are close to the typical value of 0.5 for the
rubber-like materials.

Since no indications of splitting or broadening for the
300 reflection in P1B or the 100 reflection of POM were
observed both the trigonal and the hexagonal phases of it-
P1B and POM were preserved under the high pressures:
the strain in the transverse direction must therefore be
isotropic. The monoclinic 1t-PP crystal is more
compressible along the b-axis than along the a-axis.
Similar results for it-PP were recently obtained by
Nakafuku®?.

This anisotropy of the transverse k, found in it-PP was
recently attributed by Tashiro, Kobayashi and
Tadokoro®? to crystalline dispersion due to rotation of
the CH, groups. These authors drew this conclusion by
comparing their theoretical calculations with the

1428 POLYMER, 1982, Vol 23, September

experimental ks of Ito and coworkers. It is worth while
noting that the magnitude of the transverse strains
obtained for it-PP and it-P1B are similar to those for o-
PE. The transverse strains found for POM, however, are
about two-thirds of those for o-PE.

Poly(ethylene p-oxybenzoate) o form

According to Kusanagi et al.8!, the chain molecule of
PEOB in the a crystal form assumes a large zigzag
structure, consisting of:

(1) a small zigzag link of one monomeric unit

1
—O—C—C6H4_O—CH2'—CH2'_

(2) an apex angle of 105° between the two axes of the
adjacent monomeric zigzags; and

(3)a long arm of 6.0 %, seven times as large as that for
the fully-extended zigzag o-PE chain (0.85 A). The
observed''®? and calculated®® values of E, for PEOB(«)
crystal are 5.9 x 10* and 2.4 x 10* bar, respectively, both
of which are smaller by about one order of magnitude
than the E;s found for a polymer crystal made up from
helical chains'®!''. By uniaxial stretching, the
longitudinal strain reaches about 5%, at 2 kbar, as
shown®? in Figure 17.

Strains observed under high hydrostatic pressure are
given®® in Figure 17. Transverse strains are again similar
to those for o-PE, while the strains along the fibre-axis are
negligibly small (—¢46,=0.0012 at 4903 bar), making a
striking contrast with uniaxial stretching. Results for
uniaxial stretching and hydrostatic compression indicate
a Poisson ratio of v=0.49, which strongly implies that the
experimental Poisson ratio of the polymer crystal
deduced by equation (29) is close to 0.5, irrespective of
whether it is composed of helical or zigzag chains.

5
(002 Uniaxial extension
Sakurada et o/ (1969)
£ = 60 x10%bar
4 (—
Poly(ethylene oxybenzoate) —a
200C 2
5 Orthorhombic (200)
) (110}
o
W ,/
5 s
w / [Olo]Colcv
V 2 ‘/
=
7
(006)
N g——0——O——0r
O 2000 4000

Pressure or stress (bar)

Figure 17 Pressure—strain curves for PEOB {a) compared with
the uniaxial tension—strain curve in the fibre-axis direction ob-
tained by Sakurada et al. 82
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7(110)/7(200)=1372/408
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----- Tashiro, Kobayashi,
Tadokoro, Fukada (1980)
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Figure 18 Observed and calculated anisotropy of kg for (a) PVDF({1)
and (b} PVDF(I1). ® Observed by Ito, Fujita and Okazaki69;

_— — —, calculated by Tashiro, Kobayashi, Tadokoro and Fukada®6
(a) and by Tashiro®5 (b)
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Poly(vinylidene fluoride) forms I and 11

PVDF crystallizes into several crystalline forms, of
which form I and form II are most common, the former
giving an orthorhombic and the latter a pseudo-
orthorhombic (monoclinic, f=90°) crystal structure®*.
The chain conformation is almost fully-extended planar
zigzag in form I%%, in contrast to the contracted
conformation of tgtg found in form I13%. The results of
the initial linear compressibility for the two forms are
shown in Figures 18a and 18b°%°, where theoretical
calculations by Tashiro et al®%%® are added for
comparison. As shown, the experimental anisotropy in x,,
is weak in the transverse direction for both forms. In form
I, an attempt to obtain a rolled and doubly-oriented
specimen was unsuccessful, but the two reflections on the
equator, each made up of reflections from two lattice
planes, showed almost the same pressure-strain
relationship (see Table 5). there was no change in the
breadth of the reflections with increasing pressure.

In Figure 18a plots of k, were drawn, assuming that
each of the two reflections on the equator represented the
strain of a contributing lattice plane. For form I,
theoretical results are about 30-50%, larger than the
experimental. For form 11, experiments do not agree with
theory, the latter predicting almost minimal
compressibility along the b-axis. The experimental plot
for the compressibility along this axis in form II (Figure
18b) was obtained by calculations using x4, and
Ko.(130, i the following orthorhombic relationship:

9 1 1

7Ro0100™ 77 Kour3o — -2R0.200) (31
by dy (130) a,

It was confirmed, for form II, that all the reflections
(including the 021 on the first layer line) satisfy within the
experimental error the orthorhombic relationship under
high pressure. Moreover, the 040-210 reflection on the
equator, which was fairly sharp, did not separate to the
component reflections as pressure increased, giving
—t040210)= 4T x 107°P—-0.33 x 10" °P? (P <5880
bar) in agreement with the calculated strain in the [010]
direction (see Tuble 5).

Along the fibre-axis, kg o0,, for form I was found
smaller than k ,, in form 1. This is difficult to explain
from equation (29) it) approximately the same values for the
Poisson ratio are assumed for the two forms, because E,
values for forms I and II reported by Sakurada and Kaji'!
equal 177 x 10* and 59 x 10* bar, respectively as expected
for the chain conformations involved.

EFFECT OF HYDROGEN BONDING
Nylon-63" and at-PVAB®®-%9 crystals are made up of the
so-called shect structures in which intermolecular two-
dimensional hydrogen bonding develops to form the
molecular ‘sheets’. These sheets are stacked by weak van
der Waals forces. These polymer crystals arc expected to
cxhibit  anisotropy  in  mechanical  properties,
characteristic of the sheet structure. Sakurada and Kayji
demonstrated'® that the Young’s moduli in directions
perpendicular to the fibre-axis for nylon-6 and at-PVA
crystals are highly anisotropic depending on the direction
of the stress in the hydrogen-bonded molecular sheet.
The results of the ¢—P relationships for Ny-6(a) and Ny-
6() crystals obtained by Ito, Hirata and Fujita®® are
shown in Figure 19. For Ny-6(x) and Ny-6(y) crystals, a
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1O
Nylon 6(a)  %o(200)=26 X107 bar™
Monoclinic %o (o021,(202)= 10.5x 107 bar™
Nylon 6 (v} %o(200)=163xI07Cbar™!
8- Monoclinic %o (203) = 38 107 bar™
20°eC
v-(200)
6 —
3
<
[
I
4
a-{002), (202)
2 v-(202)
a~{200}
Ie) | L |
O 2000 4000 6000
P{bar}

Figure 19 Pressure—strain curves for Ny-6{a} and Ny-6(}38

clear-cut relationship was found among the linear strain,
initial linear compressibility and sheet structure. To show
this, the normals of the observed planes, the directions of
the sheets and the observed « s are shown in Figures 20a
and 20b on structure diagrams projected on the ac-plane
of the monoclinic crystals of Ny-6(«) and Ny-6(y)°® (where
the hydrogen bonds were indicated with dotted lines). For
the y-form, k, is 4.3 times larger in the direction
perpendicular to the sheet than parallel to it. Because of
this strong anisotropy, the 001-200 doublet reflection
became well separated with increasing pressure®®. Similar
results were obtained for the a-form. Thus the inversion of
the sheet direction involved in the «—7 transition®® of Ny-
6 is distinctly reflected in the anisotropy of the linear
compressive strains induced by the hydrostatic pressure.
This is consistent with the uniaxial stretching results of
Sakurada and Kaji!®, who demonstrated that the
transverse Young's modulus in the direction of the sheet
(E,=11.4 x 10* bar) for Ny-6 crystals (- and y-forms) is
2.7 times larger than that perpendicular to the sheet
(E,=4.3 x 10* bar).

Here it is interesting to compare the experimental
results of Ito et al. for transverse x, with theroetically
calculated values obtained by Tashiro and Tadokoro®!
and Tadokoro et al.’? (Figures 20a and 20b). For the y-
structure (Figure 20b), the agreement between the
experimental and theoretical results is adequate.
However, the number of experimental points is too small
to draw the whole dumbbell shape. This shape, which is
variable depending upon the degree of the anisotropy, is
theoretically required if the monoclinic relationship
across a lateral cross-section of the lattice holds during
deformation.

For the a-structure (Figure 20a), the theoretical result
could well represent the experimental anisotropy, but its
numerical value fails to explain the experimental data.
This is ascribed by Tashiro and Tadokoro®! to the
unusually small distances for some of the intermolecular
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hydrogen bonds found in the a-structure reported by
Holmes et al.®”, on which their theoretical calculations
were based.

Based on these successful results for Ny-6(x) and Ny-
6(y) crystals, we can now plot k, for at-PVA measured
along the normals of the observed planes (Figure 21). Here
the anisotropy of the linear compressibility, though not so
striking as in Ny-6 crystals, is found to be consistent with
the sheet structure given by Sakurada'® and Okada®? in
which the molecular sheet is parallel to the ab-plane.
Sakurada and Kaji found the same anisotropy!'® in
Young’s modulus. However, the recent theoretical
calculations for the x, in PVA by Tashiro, Kobayashi and
Tadokoro?® revealed that this anisotropy may be
explained using Bunn’s model®®!% where the sheet is
parallel to the ab-plane.

Calculated results based on Bunn’s model obtained by
Tashiro et al. (who did not extend their calculations to the

a // \\
// \\
/ AN
// \\
/ \
{ \
n !
\ ? 0(002) |
\ ey /
0 5 /
\\x 1078 bar™! /
N 7/
Ov-
N (
R A
¢ [fe675° |[Yol200)
/a=956R \\\
/
] \
I ® }
\\ Nylon 6-Q. /
N hydrogen bond //

—— theory

Anisotropy Ratio

N W, 200
0=9338 %

[ e ]
/’ O 1O
Nylon 6~y / x 107 bar™

N
"""" hydrogen bond > _ _ -~
———theory

Figure 20 Observed and calculated anisotropy of Ko in the ac plane
of (a) Ny6(a) and (b) Ny-6(y). ®, Observed by ito, Hirata and
FujitaS8; — — —, calculated by Tashiro and Tadokoro?! and
Tadokoro et al.92



200

1Ol

-6 =1
x 107" bar
Figure 21 Calculated and observed anisotropy of kg in the ac
plane of at-PVA. — — —, Calculated by Tashiro, Kobayashi and

Tadokoro?6; @, observed by Ito, Hirata and Fujita58

model by Sakurada and Okada) are shown by the broken
line in Figure 21, where there is seen, in spite of a
discrepancy amounting to 40° between the long axes, an
essential agreement between the calculated and the
observed (full line) linear compressibilities. The direction
of the hydrogen bonds within the PVA crystal structure
for both models deviate markedly from the plane of
the sheet. This may reduce the direct correlation between
the anisotropy of the linear compressibility and the
direction of the sheet, especially if hydrogen bonding
contributes to an appreciable degree to the deformation of
the crystal under the hydrostatic compression.

CONCLUSIONS

Table 5 lists data for various polymer crystals: the crystal
density p.., the packing density, the observed lattice
planes, the coefficients of the polynomial giving the linear
compressive strain at 20°C and the initial linear and bulk
compressibilities. , values were deduced by calculation
from k, values, assuming conservation of the angle
between the principal axes of the zero pressure unit cell.

Of the compressibilities obtained to date, it-P4MI1P
gives the largest value (8,=36.7x107°¢ bar™') and
carbon fibre the smallest (8,=3.0 x 107 ° bar " !)®! as seen
from Table 5. Since the graphite crystal has a two-

Compressibility of the polymer crystal: T. Ito

dimensional covalent skeleton, , for carbon fibre takes an
unusually small value and should be excepted from the
typical values of the polymer crystal which results from
one-dimensional covalent chains. Values for graphite have
been reported by Drickamer et al® (f,=2.86x107°
bar ') and Ito and Nakamura®' (8,=3.3 x107°® bar ™).

With this exception then, the compressibilities of the
polymer crystals were found to lie in a relatively narrow
range from 367x107% bar™! for it-P4MIP to
11.7x 10~ bar ™! for POM, at-PVA, PEO(1)*°, PVDF(I)
and PVDF(I). This is illustrated by the horizontal
hatched zone in Figure 22 where f§, for elemental solids
have been plotted against the atomic number for
comparison®®.

In this Figure, the top hatched zone (representing
polymer crystals) just covers the compressibilities of the
alkali metals. Indeed, bulk compressibilities of the
polymer crystals correspond to those of the alkali metals.
However, the linear compressibility of the polymer crystal
is strongly anisotropic among the fibre and lateral axes:
along the fibre axis the compressibility is of the order of
1077 bar™!, only twice as large as the lincar
compressibility of diamond®?, x,=0.060x 107° bar ™!
(the lowest value for a solid material).

The compressibility of the polymer crystal decreases
with increasing density (Figure 23a) where 8, was plotted
against density. The result is reasonable since the bulk
density roughly reflects the number of atoms and covalent
bonds per unit volume of those organic molecular
crystals. It is worth noting that f, for adamantane lies on
the fB,—p.,. curve derived for polymer crystals.
Adamantane has a face-centred cubic structure, each
lattice point representing a cage-like molecule of
adamantane®’. The whole structure is thus held together
by weak van der Waals attractions acting between the
saturated hydrocarbon molecules. However, when
derived from the crystal density, f, for adamantane takes
a value predicted for a polymer crystal which loses one
degree of freedom of compressibility along the fibre axis
because of the incompressibility of its covalent skeleton.

The adamantane crystal displays a cubic—tetragonal
crystal—crystal transition at P=4.71 kbar at room
temperature (T =293K)°®, when the crystal contracts
3.6%, along the c-axis of the tetragonal structure and

1073
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Figure 22 Range of magnitude of g, for the polymer crystals
superposed on the fp—atomic number diagram for the solid ele-
ments taken from Hamann96
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Figure 23 By vs. density of the crystal plots (a) and fy vs. packing
density plots (b) for various polymer crystals and some low-mole-
cular weight organic crystals. 1, it-P4M1P; 2, it-PP; 3, n-heptaco-
sane; 4, it-P1B(1); 5, LDPE; 6, 0-PE; 7, adamantane; 8, PTMO(I);

9, Ny-6(y); 10, PEO(1); 11, Ny-6{a); 12, hexamethylenetetramine;
13,at-PVA;14,PEOB(a); 15, pentaerythritol; 16, poly(ethylene tere-
phthalate); 17, POM; 18, PVDF(11); 19, PVDF(1); 20, carbon fibre;
21,graphite;22,PTFE{IV}; 23, PTFE(Il). For the abbreviations for
the various polymers, see text
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elongates*® 1.1% in the lateral direction—a net effect of
volume contraction of 1.4%, (Figure 24). Such linear
elongation and contraction during a pressure-induced
crystal—crystal transition was also found for the II1-III
transition of PTFE crystal.

Bos for PTFE in the II and IV crystal modifications are
extraordinarily large and deviate from the expected
relationship. To eliminate the effect of the heavy fluorine
atoms (Figure 23b), B, was plotted against packing density
k instead of the bulk density. i, decreases with increasing
k in a manner similar to that in Figure 23a. The following
empirical rule was found between f, and k:

Bo(10™ ¢ bar~1)=7.65(1 —k)+ 177(1 —k)* (32)

A slight reduction in the deviation of the plots was
obtained in Figure 23b compared with Figure 23a. Even
using B, vs. k plots, the PTFE crystal is extraordinarily
compressible, though the plots shift in the right direction
towards the normal behaviour for a polymer crystal.

These extraordinarily large compressibilities are only
one of the peculiar properties exhibited by PTFE crystal,
which include the solid state transition at room
temperature which occurs by the twisting or untwisting
and rotation of the rod-like helical chain molecules®’.

Finally, it is interesting to note that, in spite of having
fewer covalent bonds, organic low molecular weight
crystals give fi,s that are indistinguishable from, or even
smaller than f,s for polymer crystals in both the f, vs.
Py and B, vs. k plots. For this, a large number of defects
and distortions particularly insisted upon for the polymer
crystals®® may give the reason.

NOTE ADDED AFTER COMPLETION OF
MANUSCRIPT

The author has been informed by Dr Nakafuku of Kochi
University of studies on PVDF(I) and PVDF(ll) by

2 10
B4700=
< 8F 122x107®
= ]
S bar
e, e
b
= Bo=24.3xI0"6bar™! (o2
e} ) | 1 1
6 9 4000 8000 6
Albar) H4700°52X107 bor:ﬂ
[
Adamantane 2
cubic (fce) = 9]
4l tetragonal g da
20°C 2
) c
< g o
I N -lele) 5 12
§u47oo=3.5x|0'6 bar™
o= 816 x107Cbar™!
Ie) | | | 1 0)
O 2000 4000 6000 8000
Plbar)

Figure 24 Pressure—strain and pressure —volumetric strain curves
for adamantane at 293K. The fcc « tetragonal crystal—crystal
transition occurs at P =4.71 kbar



Newman, Yoon and Pae (NYP)!°° and by Nakafuku'®'.
Data are listed in Table 5.

The present author’s opinion is that:

(1) NYP used the Tait equation to analyse the data;

(2) for form 1, there is a fairly good agreement between
the results for x, obtained by NYP and by Ito, Fujita and
Okazaki (IFO)°° although the former are 10-25%, smaller
than the latter;

(3) for form II, there is substantial disagreement. Along
the a-axis, x, (NYP) is about twice as large as K, (IFO),
while along the b-axis, k, (NYP) was negligibly small. The
K, (IFO) value in this direction was 5.9 x 107° bar . k,,
for the (200), (120), (130) and (040)(210) planes were not
described in the NYP paper. These were obtained in the
[FO study with reasonable accuracy (Table 5),

(4) B, for form T (NYP) (B, =8.5x 10~® bar ™'} is about
30%, smaller than that obtained by IFO (8,=11.8 x 10™°
bar ~ '), For form I1, there is fortuitous agreement between
the data for 8, (NYP) and S, (IFO). The latter authors
found g, for form I and form II with similar values. This is
reasonable because p, is about the same for both
modifications (Table 5);

(5) There is essential agreement between the results
obtained by Nakafuku and by IFO. Nakafuku also found
almost linear isotropic compressibilities in the transverse
direction for both form I and form II. His calculated value
for k,, in the fibre axis direction for form IT (0.76 x 107°
bar ~!) is about three times larger than the value observed
by IFO (0.27 x 10~ ® bar ') while it amounts to half the
value observed by NYP (1.3 x 107° bar ™ 1),

(6) Nakafuku studied the temperature dependence of
the linear compressibilities.
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